Einstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics

نویسنده

  • Sergiu I. Vacaru
چکیده

We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation (NGT) on manifolds enabled with nonholonomic distributions is analyzed. There are considered some conditions when the fundamental geometric and physical objects are determined/ modified by nonholonomic deformations in general relativity or by contributions from Ricci flow theory and/or quantum gravity. We prove that in such NGT, for certain classes of nonholonomic constraints, there are modelled effective Lagrangians which do not develop instabilities. It is also elaborated a linearization formalism for anholonomic NGT models and analyzed the stability of stationary ellipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the Schwarzschild metric. We show how to construct nonholonomic distributions which remove instabilities in NGT. Finally we conclude that instabilities do not consist a general feature of theories of gravity with nonsymmetric metrics but a particular property of certain models and/or classes of unconstrained solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

Geometry, and Nonsymmetric Metrics on Nonholonomic Manifolds

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off–diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

Deformation Quantization of Nonholonomic Almost Kähler Models and Einstein Gravity

Nonholonomic distributions and adapted frame structures on (pseudo) Riemannian manifolds of even dimension are employed to build structures equivalent to almost Kähler geometry and which allows to perform a Fedosov-like quantization of gravity. The nonlinear connection formalism that was formally elaborated for Lagrange and Finsler geometry is implemented in classical and quantum Einstein gravity.

متن کامل

Branes and Quantization for an A–Model Complexification of Einstein Gravity in Almost Kähler Variables

The general relativity theory is redefined equivalently in almost Kähler variables: symplectic form, θ[g], and canonical symplectic connection, D̂[g] (distorted from the Levi–Civita connection by a tensor constructed only from metric coefficients and their derivatives). The fundamental geometric and physical objects are uniquely determined in metric compatible form by a (pseudo) Riemannian metri...

متن کامل

Gravity as a Nonholonomic Almost Kähler

A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008